

Biologically Inspired Trunk and Tentacle Robots

Ian D. Walker

In-Space Non-Destructive Inspection Technology Workshop NASA/Johnson Space Center, February 29-March 1, 2012

Department of Electrical & Computer Engineering

Overview

- Tongue. trunk, tentacle robots biologically inspired
- Snakes and hard backbones
- Continuum trunks and soft tentacles
- Summary

Traditional Robotic Designs

Conventional Robots

Traditional robots "anthropomorphic"

Based around long rigid link elements

- Good for precision tasks in well structured environments
- Severely limited in cluttered environments
- Poor for adaptation to "unstructured tasks"

Trunk and Tentacle Structures

- More maneuverable backbone
- Can "wind around" environment better
- Enter, operate in tight spaces
- Envelop, grasp irregularly shaped objects

War of the Worlds, Paramount, 2005

Robot Trunks and Tentacles: How?

- Numerous examples in nature
- Vertebrate and invertebrate structures

Biological Inspiration – Elephant

 Motivation for our initial efforts at Clemson

Example: Clemson Elephant Trunk (~2000)

Biological Inspiration -

Gavin Miller

- Howie Choset (CMU, talk earlier today)
- Rob Buckingham (OCR, talk later today)

Howie Choset (CMU)

OC Robotics

Example: Clemson Elephant Trunk

Still rigid components

Soft "Continuum" Robotic Manipulators

- Inspiration from biology soft, flexible, continuous appendages ("tongues, trunks, and tentacles")
- Compliant operation in unstructured/cluttered environments
- Rich history, back to 1960's

Natural Continuum Structures

Exploration, sensing, manipulation

Stability and balance

Fast, dynamic target acquisition

Biological Inspiration – Octopus

Remarkable diversity and complexity of movement in soft structure

- At any point on arm:
 - elongation, shortening, bending, torsion, variable stiffness

DARPA/DSO OCTOR Project (2003-07)

Univ. of North Carolina, Chapel Hill

Biomechanics, functional morphology of cephalopods

Marine Biological Lab, Woods Hole:

Cephalopod behavior

Weizmann Institute

Mathematical modeling, motion analysis of octopus

City Univ. of New York

Artificial suckers

Electrical and computer engineering, psychology

Penn State Univ:

Mechanical engineering, materials science

Hebrew University:

Cephalopod neuromuscular control

DARPA BioDynotics Program

sOft robotiC manipulaTOR (OCTOR)

DARPA

Example: DARPA Octarm (~2006)

Biological Inspiration: Plants

In particular, vines

Example: NASA Tendril

Biological Inspiration - Squid

Brian Mccarty

Example: Octarm

Grasping and manipulation

Prey capture

How are they Made?

- Fairly wide design space
 - backbone type (segmented, continuum)
 - actuation type (motors/tendons, artificial muscles)
 - compliance/rigidity
 - extension/bending (torsion)
 - operation/control strategy

Making Them Work is Not Easy!

- Many degrees of freedom to coordinate, sense
 - Passively/actively controlled
 - non-intuitive movements for operators
- Model and non-model based operation
 - Kinematic models fairly well established
 - Dynamic models emerging

Summary

- New generation of robots corresponding to biological "tongues, trunks, and tentacles"
- Fairly wide design space
- Expanding corresponding body of theory
- Preferred design strongly a function of application

Recent Survey Papers

- R.J. Webster III and B.A. Jones, "Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review", *International Journal of Robotics Research*, Vol. 29, No. 13, pp 1661-1683, November 2010.
- D. Trivedi, C.D. Rahn, W.M. Kier, and I.D. Walker, "Soft Robotics: Biological Inspiration, State of the Art, and Future Research", *Applied Bionics and Biomechanics*, 5(2), pp. 99-117, 2008.